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Abstract

MSGtool is a MATLAB toolbox which provides a collection of functions for the
simulation and estimation of a large variety of Markov Switching GARCH (MSG)
models. Currently, the software integrates a method to select the best starting values
for the estimation and a post-estimation analysis to ensure the convergence. The
toolbox is very flexible a user-friendly with a large number possible options. In this
paper, we give some illustrative examples.
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1 Introduction

The purpose of this document is to introduce the user to the functionality of the Markov
Switching Generalized Autoregressive Conditional Heteroskedasticity (MSGARCH) toolbox
or MSGtool1 package for MATLAB.

Regime Switching GARCH models belong to a class of models that yields the well known
univariate GARCH models introduced by Bollerslev (1986) as a special case. The idea is
that the volatility is characterized by regime switches driven by a Markov chain. Although
attractive, there are copious empirical evidences in the econometric literature that argue
against the suitability of the traditional GARCH model. For example, these models do
not adequately fit the data over a long period of time. Lamoureux and Lastrapes (1990)
show that if structural changes are not considered, it may bias upward GARCH estimates of
persistence in variance. Thus, MSGARCH models can be useful. They have been introduced
in time series analysis by Hamilton (1989) and are now very popular among econometricians.
These processes give rise to a conditional mixture distribution, where each component is
endowed with its own GARCH structure (see Haas and Paolella (2012)). Moreover, they
allow a time-varying skewness as recommended by Rockinger and Jondeau (2002) contrary
to traditional GARCH type models.

Economic intuitions can often be mapped to these MSGARCH models. It is a strong
assumption to say that the volatility of an asset follows the same dynamics along the time.
Structural changes introduce switches in the dynamic of these assets as shown by Lamoureux
and Lastrapes (1990). Markov Switching GARCH models are rather flexible and have been
found to fit asset returns well. This class of model is useful to model the time varying
volatility where different states of the world affect the evolution of a time series. The
dynamic depends on the present regime. This latter one is a realization of an hidden
Markov chain with finite state space. A lot of empirical applications have used this kind of
models, for example Hamilton and Susmel (1994), Brunetti et al. (2008) among others.

To our knowledge, even if these models are now very popular, there is no statistical
software which is enough general, flexible and user-friendly. OxMetrics and PcGive can es-
timate MSGARCH processes. However, the choice of the form of GARCH components is
very limited. Some functions are also available to estimate MS-Autoregressive models, for
example Perlin (2015) and Ding (2012) propose a package to estimate MS-Vector Autore-
gressive models with Matlab. In this appendix, we present a very general toolbox and give
some illustrative examples on financial returns. The user can simulate and estimate three
MS-GARCH models with many options: the models of Gray (1996), Klaassen (2002) and
Haas, Mittnik, et al. (2004) 2. He has also the possibility to choose the distribution of the
errors and the estimation method in a simple way. Our code is optimized to be used with
the Matlab compiler and mex functions.

The paper is organized as follows. In section 2, we give a brief exposition on the topic
of regime switching GARCH models. Section 3 describes the available functions and their
particularities. Section 4 gives some illustrative examples.

1The package is still under development to accommodate new features. The up to date version can be
downloaded from http://www.thomaschuffart.fr/codes-matlab/

2The MSGARCH model of Augustyniak (2014) will be implemented in the next release.
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2 MS-GARCH models

(εt) is a MSGARCH process if, for t = 1, . . . , T with T the sample size, we have:

yt = εt

with
εt = ηt

√
ht(∆t), ηt ∼ IID(0, 1)

and there exist α0(∆t), αi(∆t), i = 1, . . . , q and γl(∆t), l = 1, . . . , p such that

ht(∆t) = α0(∆t) +

q∑
i=1

αi(∆t)ε
2
t−i +

p∑
l=1

γl(∆t)ht−l. (1)

ηt is an identically and independently distributed random variable with zero mean and unit
variance. ∆t is a variable which indicates the state of the world at time t and follows a
Markov chain with finite state space S = 1, ..., k, and a transition matrix P . Thus, the
probability to switch from one regime to another depends on the transition matrix P , given
by

P =

p11 . . . p1k
... . . .

...
pk1 . . . pkk


with pij = p(∆t = j|∆t−1 = i) the probability to be in state j at time t given to be in
the state i at time t − 1. In this form, the model can not be estimated by QML since the
calculation of the likelihood function for a sample of T observations is infeasible. It requires
the integration of kT possible regime paths where k is the number of regimes (Hamilton and
Susmel (1994) and Cai (1994)). To circumvent the path dependence problem, Gray (1996)
introduces a MS-GARCH model under the hypothesis that the conditional variance at any
regime depends on the expectation of previous conditional variances. He proposes to replace
ht−1 by the conditional variance of the error term εt−1 given the information up to t− 2:

ht(∆t) = α0(∆t) + α(∆t)ε
2
t−1 + γ(∆t)

k∑
i=1

p(∆t−1 = i|Ωt−2)hi,t−1. (2)

hi,t is the conditional variance in state i at time t, Ωt is the information set of the process
(i.e. the return history up to date t − 1) and p = q = 1. Klaassen (2002) enlarges the
information set up to t−1 by conditioning the expectation of previous conditional variances
on all available observations and also on the current regime:

ht(∆t) = α0(∆t) + α(∆t)ε
2
t−1 + γ(∆t)

k∑
i=1

p(∆t−1 = i|Ωt−1,∆t = j)hi,t−1. (3)

The model of Haas, Mittnik, et al. (2004) contrasts with this approach because each specific
conditional variance depends only on its own lag,

ht(∆t) = α0(∆t) + α(∆t)ε
2
t−1 + γ(∆t)ht−1(∆t). (4)
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This model can be rewritten in matrix form:

ht = α0 +α1ε
2
t−1 + γht−1,

where α0 = [α01, α02, ..., α0k]′, α1 = [α11, α12, ..., α1k]′ and γ = diag(γ1, γ2, ..., γk). ht is
thereby a vector of k × 1 components. These MS-GARCH models3 can be easily estimated
by Maximum Likelihood (ML) estimation following the work of Hamilton (1989). A ML
estimation of θ0, the parameter vector θ0 = (α00,α01,γ0)′ to be estimated, is defined as

θ̂ = arg max L =

T∑
t=1

log f(εt|Ωt−1)

where f(εt|Ωt−1) is the conditional density of εt given the process up to time t. This density
is the sum of conditional regime densities weighted by the conditional regime probabilities
Pr(∆t = j|Ωt−1, θ): The vector of parameters has to respect some usual constraints: the
stationarity of the process and the positivity of the variance (see Haas and Paolella (2012)
for details).

3 Overview of the toolbox

The MStool package is written for the simulation and estimation of a large variety of
MS-GARCH models. The main functionality of the code is build around two functions:
swgarch() and swgarch_sim() that we present in this section. Moreover, we list all the
functions in Tables 1 and 2 with a brief description and their functionalities. The instal-
lation of the package is quite straightforward. In order to use the main functions, all you
need to do is to tell MATLAB to place the files from the m Files.

3.1 Simulation
The swgarch_sim function returns the simulation of MSGARCH process. The user can
specify both the type of process and the distribution error. This function simulates a
Markov Chain which represents the true state of the nature. This latter one is not observed
by the econometrician. We propose two different Markovian regime switching generation
processes. In the first one, the conditional variance regimes are dependent. In the second
one, the regimes are independent. In this last case, if a switch occurs, we move directly in
an other regime. We consider that the past conditional variance was already in this regime.
By construction, the estimation procedure proposed by Gray (1996) and Klaassen (2002) is
expected to fit well the first type of switching whereas Haas, Mittnik, et al. (2004)’s model
is expected to fit better the second one. The user calls the function with

• datasim = swgarch_sim(dim, k, parameters, M, error_type,
ms_type, param_dist, fig).

The function returns a structure datasim and a figure object fig if asked by the user.
The structure encompasses five elements: εt (datasim.vE) the simulated residuals, ht

3There are a number extensions of these two types of MS-GARCH processes. For example, Gallo and
Otranto (2015) introduce asymmetric effects in each regime variances.
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(datasim.vH) the simulated conditional variance, ht (datasim.mH) the regime specific con-
ditional variances and the true state of the nature (datasim.mS) simulated by the Markov
chain. The figure fig represents both εt and ht. swgarch_sim.m calls a routine markovSim.m
which generates Markov chains. We present working example in Section 4.

3.2 Estimation
To estimate a MSGARCH model among the proposed ones, the user has to call the main
function swgarch.m. This function calls many subroutines to speed up the estimation. Some
of them can be translated in mex with the MATLAB coder toolbox. The function is coded
to be very intuitive and flexible for the user. To estimate a MSGARCH model the user has
to call:

• [estimation, probabilities, diagnostics] = swgarch(data, k)

where data is the residual vector and k the number of regimes. By default, this function
estimates a MSGARCH model of Haas, Mittnik, et al. (2004) by ML assuming Normal
distribution with an unconstrained optimization. A display message will ask the user how
many starting values he wants to try to initialize the likelihood. Some options are also
available:

• [estimation, probabilities, diagnostics] = swgarch(data, k,
error_type, ms_type, estim_cons, startvalopt, startvalG,
startvalM, startvalDist).

error_type is the error distribution, currently two distributions are available: ’NORMAL’
for the Gaussian and ’STUDENTST’ for the Student distribution. ms_type is the type of
MSGARCH, it can be either ’HAAS’, ’KLAASSEN’ or ’GRAY’. estim_cons is to set up the
kind of optimization, unconstrained or constrained. In the unconstrained case, we transform
the parameters with the routines swgarch_transform and swgarch_itransform to respect
the constraints on parameters. Then swgarch calls the fminunc optimization function. In
the constrained case, swgarch calls the fmincon optimization function with swgarch_constr
for the inequality constraints. startvalopt has to be a structure with two elements. The
first element is ’YES’ or ’NO’ if the user wants to provide starting values or not. If he
provides starting values, the second element can be empty ; in the other case, the user has
to provide the number of sets to test before launching the optimization. startvalG is a
matrix k×3 which contains GARCH parameters starting values and startvalM is a matrix
k × k of the transition probabilities starting values. Finally, startvalDist is the starting
value of the distribution parameter if error_type is not ’NORMAL’.

The ouput is composed of three structures: estimation, probabilities and diagnostics.
estimation is composed of the following elements:

• estimation.garch: the estimates of GARCH parameters.

• estimation.M: the estimates of the transition probabilities matrix.

• estimation.VCV: the variance covariance matrix.

• estimation.VCVr: the robust variance covariance matrix.
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• estimation.H: the conditional predicted variance.

probabilities is composed of three elements: probabilities.predict_proba, probabilities.smoothed_proba
and probabilities.uncond_proba. The first one is the predicted probabilities resulting
from the likelihood estimation, the second one is the smoothed probabilities following Kim
(1994) and the last one is the unconditional probabilities. Finally diagnostics contains
usual diagnostic elements of the optimization like exit flag, numerical scores, hessian, the
value of the likelihood etc.

4 Illustrations

4.1 Monte-Carlo experiments
In this section, we give some examples and show the performance of the toolbox using
some Monte-Carlo experiments. We perform two experiments: in the first one we simulate
data following a path-dependence MSGARCH and we estimate the MSGARCH of Klaassen
(2002). In the second one, we simulate data following a non path-dependence MSGARCH
and we estimate the MSGARCH of Haas, Mittnik, et al. (2004).

The set up of the experiments is as follow. We simulate two regimes. The parame-
ters for the data generating processes (DGP) are α0 = (0.1, 0.01)′, α1 = (0.1, 0.05)′ and

γ = (0.92, 0.7)′ if we simulate a path-dependence MSGARCH or γ =

(
0.92 0

0 0.7

)
if not.

We make R = 2000 replications with T = 2000 observations. We generate 2000 more ob-
servations than required to eliminate initialization effects. We choose the true values of
parameters to start the estimation procedure via ML and the unconditional variance for h0
and ε20. Both constrained and unconstrained optimization are applied. The code to generate
the Monte-Carlo experiments is the following one:

1. data = swgarch_sim(T,k,[0.1 0.1 0.92 ; 0.01 0.05 0.7],[0.9 0.1 ; 0.1 0.9],’NORMAL’,ms_type,valdist,0)
with T = 2000, k = 2, ms_type is 1 or 2 depending on the experiment.

2. [estimation, probabilities, diagnostics] = swgarch(data, k, ’NORMAL’, ms_type,
estim_cons, {’YES’,[]}, [0.1 0.1 0.92 ; 0.01 0.05 0.7], [0.9 0.1 ; 0.1 0.9])
with ms_type is ’HAAS’ or ’KLAASSEN’, ms_type is ’CONS’ or ’UNCONS’ for con-
strained or unconstrained optimization, startvalDist is empty or 5.

3. store the results and repeat it R times.

Tables 3 and 4 show the results of the Monte-Carlo experiments. We report the mean of
each parameter estimation, the asymptotic standard errors (A-StErr) and the mean squared
errors (MSE). For both experiments, results show a good estimation of the true DGP.
However, for the Klaassen’s model, the γ2 is underestimated. Augustyniak (2014) observes
the same issue for Gray’s model. This is due to the path dependence approximation proposes
in their respective models.
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Value Constrained Unconstrained
Mean A-StErr MSE Mean A-StErr MSE

α01 0.01 0.013 0.004 0.000 0.013 0.004 0.000
α11 0.05 0.074 0.062 0.005 0.075 0.062 0.005
γ1 0.7 0.597 0.042 0.012 0.598 0.043 0.012
α02 0.1 0.112 0.027 0.001 0.116 0.026 0.001
α12 0.1 0.099 0.040 0.002 0.107 0.035 0.001
γ2 0.92 0.931 0.065 0.004 0.913 0.045 0.002
p11 0.9 0.898 0.014 0.001 0.899 0.020 0.001
p22 0.9 0.898 0.017 0.001 0.897 0.023 0.001

Table 3 Experiment 1: simulation of a path-dependence MSGARCH and estimation of MSGARCH
of Klaassen (2002).

Value Constrained Unconstrained
Mean A-StErr MSE Mean A-StErr MSE

α01 0.01 0.010 0.002 0.000 0.010 0.002 0.000
α11 0.05 0.053 0.015 0.000 0.052 0.014 0.000
γ1 0.7 0.695 0.034 0.001 0.697 0.035 0.001
α02 0.1 0.125 0.007 0.025 0.155 0.057 0.015
α12 0.121 0.030 0.001 0.010 0.122 0.022 0.001
γ2 0.92 0.886 0.013 0.003 0.881 0.024 0.001
p11 0.9 0.898 0.130 0.000 0.898 0.120 0.000
p22 0.9 0.898 0.160 0.000 0.898 0.160 0.000

Table 4 Experiment 2: simulation of a non path-dependence MSGARCH and estimation of MS-
GARCH of Haas, Mittnik, et al. (2004).
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